cpld器件的基本结构包括_cpld硬件结构
1.CPLD和FPGA的区别,用语言和逻辑图形设计有什么区别?
2.基于CPLD数据集控制系统设计
3.谁来帮帮我这个毕业设计啊!!!如何基于 CPLD设计并实现单相晶闸管交流全周波调功器?
4.逆变器中双DSP+CPLD、双DSP+双MCU 结构 都是什么意思 DSP、MCU、CPLD 都是什么东东?越详尽越好
5.cpld是什么意思?
一家之言,欢迎指证:
DSP:数字信号处理器,处理器用哈弗结构,工作频率较高,能大幅度提高数字信号处理算法的 执行效率。
MCU:微控制器,主要用于控制系统,工作频率一般来说比DSP低,硬件上具有多个IO端口,同时也集成了多个外设,主要是便于在控制系统中的应用。至于ARM处理器,个人认为是MCU的高级版本,ARM本身只是一个内核,目前已经有多个版本。
CPLD:复杂可编程逻辑器件
FPGA:现场可编程门阵列
后两者都是可编程器件,CPLD目前一半用FLASH技术,而FPGA用SRAM技术,这就决定了FPGA需要用特定的配置技术。同时FPGA的规模要比CPLD大得多,但CPLD应用起来相对要简单的多。
CPLD和FPGA的区别,用语言和逻辑图形设计有什么区别?
CPLD程序写在CPLD芯片中。用户可以把编译好的CPLD程序通过专用的CPLD程序烧写器烧写到CPLD芯片中,从而实现程序设计的数字逻辑功能。CPLD是在PLD器件基础上发展起来的数字逻辑器件,PLD是指Programmable logic device,即可编程逻辑器件。
CPLD是complex programmable logic device,即复杂可编程逻辑器件。用户可以把编译好的CPLD程序通过专用的CPLD程序烧写器烧写到CPLD芯片中,从而实现程序设计的数字逻辑功能。所以CPLD可以通过编写特定逻辑的硬件程序,代替分立的数字逻辑芯片实现各种数字逻辑的功能。
基于CPLD数据集控制系统设计
FPGA和cpld在执行硬件描述语言上没有区别。cpld掉电不丢代码,保密性好一些,成本也低一些,当然也少一些,不适合做比较大的项目。
FPGA内部有PLL这个在倍频和相移等操作时很方便。FPGA内部有RAM可以用来做fifo等类似结构来进行数据缓冲而不消耗逻辑单元。如果用cpld做则会消耗原本就不多的逻辑单元,cpld虽然内部有flash但操作起来很麻烦,也占用有限的逻辑。高端一点的FPGA还可以装软核,内部有dsp等。随着FPGA价格降低,cpld快被淘汰了。cpld一般只是教学或做一些简单的组合逻辑。
硬件描述语言和逻辑图形设计有点类似于C和汇编。正如单片机编程一样都用C,做FPGA开发也都用硬件描述语言。用逻辑图形设计效率低很难进行大规模电路设计。硬件描述语言一般用verilog
谁来帮帮我这个毕业设计啊!!!如何基于 CPLD设计并实现单相晶闸管交流全周波调功器?
第1章 概 述
21世纪人类将全面进入信息化社会,对微电子信息技术和微电子VLSI基础技术将不断提出更高的发展要求,微电子技术仍将继续是21世纪若干年代中最为重要的和最有活力的高科技领域之一。而集成电路(IC)技术在微电子领域占有重要的地位。伴随着IC技术的发展,电子设计自动化(Electronic Design Automation EDA)己经逐渐成为重要设计手段,其广泛应用于模拟与数字电路系统等许多领域。
VHDL是广泛使用的设计输人硬件语言,可用于数字电路与系统的描述、模拟和自动设计.CPLD/FPGA(复杂可编程逻辑器件/现场可编程门阵列)为数字系统的设计带灵活性,兼有串!并行工作方式和高集成度!高速!高可靠性等明显的特点,CPLD/FPGA的时钟延迟可达纳秒级,结合其并行工作方式,在超高速领域和实时测控方面有非常广泛的应用。
本次设计的目的是使用可编程逻辑器件设计一个专用的A/D转换器的控制器,取代常用的微控制器,用于数据集。本文讲述对A/D进行数据样控制。设计要求用一片CPLD/FPGA,模数转换控制器ADC和LED显示器构成一个数据集系统,用CPLD/FPGA实现数据集中对A/D 转换,数据运算,及有关数据的显示控制。课题除了学习相应的硬件知识外,还要学习如何使用VHDL语言设计可编程逻辑器件。
未来的EDA技术向广度和深度两个方向发展.
(1)在广度上,EDA技术会日益普及.在过去,由于EDA软件价格昂贵,对硬件环境要求高,其运行环境是工作站和UNIX操作系统.最近几年,EDA软件平台化进展迅速,这些PC平台上的EDA软件具有整套的逻辑设计、仿真和综合工具.随着PC机性能的提高,PC平台上的软件功能将会更加完善.
(2)在深度上,EDA技术发展的下一步是ESDA伍electronic System Design Automation电子系统设计自动化)和CE (Concurrent Engineering并行设计工程).目前的各种EDA工具,如系统仿真,PCB布线、逻辑综合、DSP设计工具是彼此独立的.随着技术的发展,要求所有的系统工具在统一的数据库及管理框架下工作,由此提出了ESDA和CE概念。
第2章 EDA的发展历程及其应用
2.1电子设计自动化(EDA)发展概述
2.1.1什么是电子设计自动化(EDA )
在电子设计技术领域,可编程逻辑器件(如PLD, GAL)的应用,已有了很好的普及。这些器件为数字系统的设计带来极大的灵活性。由于这类器件可以通过软件编程而对其硬件的结构和工作方式进行重构,使得硬件的设计可以如同软件设计那样方便快捷。这一切极大地改变了传统的数字系统设计方法、设计过程、乃至设计观念。
电子设计自动化(EDA)是一种实现电子系统或电子产品自动化设计的技术,它与电子技术、微电子技术的发展密切相关,吸收了计算机科学领域的大多数最新研究成果,以高性能的计算机作为工作平台,是20世纪90年代初从CAD(计算机设计)、CAM(计算机制造)、CAT(计算机测试)和CAE(计算机工程)的概念发展而来的。EDA技术就是以计算机为工具,在EDA软件平台上,根据硬件描述语言HDL完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局线、仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。设计者的工作仅限于利用软件的方式来完成对系统硬件功能的描述,在EDA工具的帮助下和应用相应的FPGA/CPLD器件,就可以得到最后的设计结果。尽管目标系统是硬件,但整个设计和修改过程如同完成软件设计一样方便和高效。当然,这里的所谓EDA主要是指数字系统的自动化设计,因为这一领域的软硬件方面的技术已比较成熟,应用的普及程度也已比较大。而模拟电子系统的EDA正在进入实用,其初期的EDA工具不一定需要硬件描述语言。此外,从应用的广度和深度来说,由于电子信息领域的全面数字化,基于EDA的数字系统的设计技术具有更大的应用市场和更紧迫的需求性。
2.1.2 EDA的发展历史
EDA技术的发展始于70年代,至今经历了三个阶段。电子线路的CAD(计算机设计)是EDA发展的初级阶段,是高级EDA系统的重要组成部分。它利用计算机的图形编辑、分析和存储等能力,协助工程师设计电子系统的电路图、印制电路板和集成电路板图;用二维图形编辑与分析,主要解决电子线路设计后期的大量重复性工作,可以减少设计人员的繁琐重复劳动,但自动化程度低,需要人工干预整个设计过程。这类专用软件大多以微机为工作平台,易于学用,设计中小规模电子系统可靠有效,现仍有很多这类专用软件被广泛应用于工程设计。80年代初期,EDA技术开始技术设计过程的分析,推出了以仿真(逻辑模拟、定时分析和故障仿真)和自动布局与布线为核心的EDA产品,这一阶段的EDA已把三维图形技术、窗口技术、计算机操作系统、网络数据交换、数据库与进程管理等一系列计算机学科的最新成果引入电子设计,形成了CAE—计算机工程。也就是所谓的EDA技术中级阶段。其主要特征是具备了自动布局布线和电路的计算机仿真、分析和验证功能。其作用已不仅仅是设计,而且可以代替人进行某种思维。CAE这种以原理图为基础的EDA系统,虽然直观,且易于理解,但对复杂的电子设计很难达到要求,也不宜于设计的优化。
所以,90年代出现了以自动综合器和硬件描述语言为基础,全面支持电子设计自动化的ESDA(电子系统设计自动化),即EDA阶段、也就是目前常说的EDA.过去传统的电子系统电子产品的设计方法是用自底而上(Bottom_ Up)的程式,设计者先对系统结构分块,直接进行电路级的设计。这种设计方式使设计者不能预测下一阶段的问题,而且每一阶段是否存在问题,往往在系统整机调试时才确定,也很难通过局部电路的调整使整个系统达到既定的功能和指标,不能保证设计一举成功。EDA技术高级阶段用一种新的设计概念:自顶而下(Top_ Down)的设计程式和并行工程(Concurrent engineering)的设计方法,设计者的精力主要集中在所要电子产品的准确定义上,EDA系统去完成电子产品的系统级至物理级的设计。此阶段EDA技术的主要特征是支持高级语言对系统进行描述,高层次综合(High Level Synthesis)理论得到了巨大的发展,可进行系统级的仿真和综合。图2-1给出了上述三个阶段的示意图。
图2-1 EDA发展阶段示意图
2.1.3 EDA的应用
随着大规模集成电路技术和计算机技术的不断发展,在涉及通信、国防、航天、医学、工业自动化、计算机应用、仪器仪表等领域的电子系统设计工作中,EDA技术的含量正以惊人的速度上升;电子类的高新技术项目的开发也依赖于EDA技术的应用。即使是普通的电子产品的开发,EDA技术常常使一些原来的技术瓶颈得以轻松突破,从而使产品的开发周期大为缩短、性能价格比大幅提高。不言而喻,EDA技术将迅速成为电子设计领域中的极其重要的组成部分。
电子设计专家认为,单片机时代已经结束,未来将是EDA的时代,这是极具深刻洞察力之言。随着微电子技术的飞速进步,电子学进入了一个崭新的时代。其特征是电子技术的应用以空前规模和速度渗透到各行各业。各行业对自己专用集成电路(ASIC)的设计要求日趋迫切,现场可编程器件的广泛应用,为各行业的电子系统设计工程师自行开发本行业专用的ASIC提供了技术和物质条件。与单片机系统开发相比,利用EDA技术对FPGA/CPLD的开发,通常是一种借助于软件方式的纯硬件开发,可以通过这种途径进行专用ASIC开发,而最终的ASIC芯片,可以是FPGA/CPLD,也可以是专制的门阵列掩模芯片,FPGA/ CPLD起到了硬件仿真ASIC芯片的作用。
2.2基于EDA的FPGA/ CPLD开发
我国的电子设计技术发展到今天,将面临一次更大意义的突破,即FPGA/CPLD (Field Programmable Gate Array,现场可编程门阵列/Complex Programmable Logic Device,复杂可编程逻辑器件)在EDA基础上的广泛应用。从某种意义上说,新的电子系统运转的物理机制又将回到原来的纯数字电路结构,但却是一种更高层次的循环,它在更高层次上容纳了过去数字技术的优秀部分,对(Micro Chip Unit) MCU系统是一种扬弃,在电子设计的技术操作和系统构成的整体上发生了质的飞跃。如果说MCU在逻辑的实现上是无限的话,那么FPGA/CPLD不但包括了MCU这一特点,而且可以触及硅片电路的物理极限,并兼有串、并行工作方式,高速、高可靠性以及宽口径适用性等诸多方面的特点。不但如此,随着EDA技术的发展和FPGA/CPLD在深亚微米领域的进军,它们与MCU, MPU, DSP, A/D, D/A, RAM和ROM等独立器件间的物理与功能界限已日趋模糊。特别是软/硬IP芯片(知识产权芯片;intelligence Property Core,一种已注册产权的电路设计)产业的迅猛发展,嵌入式通用及标准FPGA器件的呼之欲出,片上系统(SOC)已经近在咫尺。FPGA/CPLD以其不可替代的地位及伴随而来的极具知识经济特征的IP芯片产业的崛起,正越来越受到业内人士的密切关注。
2.2.1 FPGA/CPLD简介
FPGA和CPLD都是高密度现场可编程逻辑芯片,都能够将大量的逻辑功能集成于一个单片集成电路中,其集成度已发展到现在的几百万门。复杂可编程逻辑器件CPLD是由PAL (Programmable Array Logic,可编程阵列逻辑)或GAL (Generic Array Logic,通用阵列逻辑)发展而来的。它用全局金属互连导线,因而具有较大的延时可预测性,易于控制时序逻辑;但功耗比较大。现场可编程门阵列(FPGA)是由可编程门阵列(MPGA)和可编程逻辑器件二者演变而来的,并将它们的特性结合在一起,因此FPGA既有门阵列的高逻辑密度和通用性,又有可编程逻辑器件的用户可编程特性。FPGA通常由布线分隔的可编程逻辑单元(或宏单元)构成阵列,又由可编程Ir0单元围绕阵列构成整个芯片。其内部是分段互联的,因而延时不可预测,只有编程完毕后才能实际测量。
CPLD和FPGA建立内部可编程逻辑连接关系的编程技术有三种:基于反熔丝技术的器件只允许对器件编程一次,编程后不能修改。其优点是集成度、工作频率和可靠性都很高,适用于电磁辐射干扰较强的恶劣环境。基于EEPROM存储器技术的可编程逻辑芯片能够重复编程100次以上,系统掉电后编程信息也不会丢失。编程方法分为在编程器上编程和用下载电缆编程。用下载电缆编程的器件,只要先将器件装焊在印刷电路板上,通过PC, SUN工作站、ATE(自动测试仪)或嵌入式微处理器系统,就能产生编程所用的标准5V, 3.3V或2.5V逻辑电平信号,也称为ISP (In System Programmable)方式编程,其调试和维修也很方便。基于SRAM技术的器件编程数据存储于器件的RAM区中,使之具有用户设计的功能。在系统不加电时,编程数据存储在EPROM、硬盘、或软盘中。系统加电时将这些编程数据即时写入可编程器件,从而实现板级或系统级的动态配置。
2.2.2基于EDA工具的FPGA/CPLD开发流程
FPGA/CPLD的开发流程:设计开始首先利用EDA工具的文本或图形编辑器将设计者的设计意图用文本方式(如VHDL, Verilog-HDL程序)或图形方式(原理图、状态图等)表达出来。完成设计描述后即可通过编译器进行排错编译,变成特定的文本格式,为下一步的综合准备。在此,对于多数EDA软件来说,最初的设计究竟用哪一种输入形式是可选的,也可混合使用。一般原理图输入方式比较容易掌握,直观方便,所画的电路原理图(请注意,这种原理图与利用PROTEL画的原理图有本质的区别)与传统的器件连接方式完全一样,很容易为人接受,而且编辑器中有许多现成的单元器件可资利用,自己也可以根据需要设计元件(元件的功能可用HDL表达,也可仍用原理图表达)。当然最一般化、最普适性的输入方法是HDL程序的文本方式。这种方式最为通用。如果编译后形成的文件是标准VHDL文件,在综合前即可以对所描述的内容进行仿真,称为行为仿真。即将设计源程序直接送到VHDL仿真器中仿真。因为此时的仿真只是根据VHDL的语义进行的,与具体电路没有关系。在仿真中,可以充分发挥VHDL中的适用于仿真控制的语句,对于大型电路系统的设计,这一仿真过程是十分必要的,但一般情况下,可以略去这一步骤.
图2-2 FPGA / CPLD开发流程
设计的第三步是综合,将软件设计与硬件的可实现性挂钩,这是将软件转化为硬件电路的关键步骤。综合器对源文件的综合是针对某一FPGA/CPLD供应商的产品系列的,因此,综合后的结果具有硬件可实现性。在综合后,HDL综合器一般可生成EDIF, XNF或VHDL等格式的网表文件,从门级来描述了最基本的门电路结构。有的EDA软件,具有为设计者将网表文件画成不同层次的电路图的功能。综合后,可利用产生的网表文件进行功能仿真,以便了解设计描述与设计意图的一致性。功能仿真仅对设计描述的逻辑功能进行测试模拟,以了解其实现的功能是否满足原设计的要求,仿真过程不涉及具体器件的硬件特性,如延迟特性。一般的设计,这一层次的仿真也可略去。综合通过后必须利用FPGA/CPLD布局/布线适配器将综合后的网表式文件针对某一具体的目标器件进行逻辑映射操作,其中包括底层器件配置、逻辑分割、逻辑优化、布局布线。适配完成后,EDA软件将产生针对此项设计的多项结果:1适配报告:内容包括芯片内分配与利用、引脚锁定、设计的布尔方程描述情况等;2时序仿真用网表文件;3下载文件,如JED或POF文件;4适配错误报告等。时序仿真是接近真实器件运行的仿真,仿真过程中己将器件硬件特性考虑进去了,因此仿真精度要高得多。时序仿真的网表式文件中包含了较为精确的延迟信息。如果以上的所有过程,包括编译、综合、布线/适配和行为仿真、功能仿真、时序仿真都没有发现问题,即满足原设计的要求,就可以将适配器产生的配置/下载文件通过FPGA/CPLD编程器或下载电缆载入目标芯片FPGA或CPLD中,然后进入如图1-2所示的最后一个步骤:硬件仿真或测试,以便在更真实的环境中检验设计的运行情况。这里所谓的硬件仿真,是针对ASIC设计而言的。在ASIC设计中,比较常用的方法是利用FPGA对系统的设计进行功能检测,通过后再将其VHDL设计以ASIC形式实现;而硬件测试则是针对FPGA或CPLD直接用于电路系统的检测而言的。
2.2.3用FPGA/CPLD进行开发的优缺点
我们认为,基于EDA技术的FPGA/CPLD器件的开发应用可以从根本上解决MCU所遇到的问题。与MCU相比,FPGA/CPLD的优势是多方面的和根本性的:
1.编程方式简便、先进。FPGA/CPLD产品越来越多地用了先进的IEEE 1149.1边界扫描测试(BST)技术(由联合测试行动小组,JT开发)和ISP(在系统配置编程方式)。在+5V工作电平下可随时对正在工作的系统上的FPGA/CPLD进行全部或部分地在系统编程,并可进行所谓菊花链式多芯片串行编程,对于SRAM结构的FPGA,其下载编程次数几乎没有限制(如Altera公司的FLEXI 10K系列)。这种编程方式可轻易地实现红外编程、超声编程或无线编程,或通过电话线远程在线编程。这些功能在工控、智能仪器仪表、通讯和军事上有特殊用途。
2.高速。FPGA/CPLD的时钟延迟可达纳秒级,结合其并行工作方式,在超高速应用领域和实时测控方面有非常广阔的应用前景。
3.高可靠性。在高可靠应用领域,MCU的缺憾为FPGA/CPLD的应用留下了很大的用武之地。除了不存在MCU所特有的复位不可靠与PC可能跑飞等固有缺陷外,FPGA/CPLD的高可靠性还表现在几乎可将整个系统下载于同一芯片中,从而大大缩小了体积,易于管理和屏蔽。
4.开发工具和设计语言标准化,开发周期短。由于FPGA/CPLD的集成规模非常大,集成度可达数百万门。因此,FPGA/ CPLD的设计开发必须利用功能强大的EDA工具,通过符合国际标准的硬件描述语言(如VHDL或Verilog-HDL)来进行电子系统设计和产品开发。由于开发工具的通用性、设计语言的标准化以及设计过程几乎与所用的FPGA/ CPLD器件的硬件结构没有关系.
所以设计成功的各类逻辑功能块软件有很好的兼容性和可移植性,它几乎可用于任何型号的FPGA/ CPLD中,由此还可以知识产权的方式得到确认,并被注册成为所谓的IP芯片,从而使得片上系统的产品设计效率大幅度提高。由于相应的EDA软件功能完善而强大,仿真方式便捷而实时,开发过程形象而直观,兼之硬件因素涉及甚少,因此可以在很短时间内完成十分复杂的系统设计,这正是产品快速进入市场的最宝贵的特征。美国TI公司认为,一个ASIC 80%的功能可用IP芯片等现成逻辑合成。EDA专家预言,未来的大系统的FPGA/CPLD设计仅仅是各类再应用逻辑与IP芯片的拼装,其设计周期最少仅数分钟。
5.功能强大,应用广阔。目前,FPGA/ CPLD可供选择范围很大,可根据不同的应用选用不同容量的芯片。利用它们可实现几乎任何形式的数字电路或数字系统的设计。随着这类器件的广泛应用和成本的大幅度下降,FPGA/CPLD在系统中的直接应用率正直逼ASIC的开发。同时,FPGA/CPLD设计方法也有其局限性。这主要体现在以下几点:
(1).FPGA/CPLD设计软件一般需要对电路进行逻辑综合优化((Logic段Synthesis & Optimization),以得到易于实现的结果,因此,最终设计和原始设计之间在逻辑实现和时延方面具有一定的差异。从而使传统设计方法中经常用的一些电路形式(特别是一些异步时序电路)在FPGA/CPLD设计方法中并不适用。这就要求设计人员更加了解FPGA/CPLD设计软件的特点,才能得到优化的设计;
(2).FPGA一般用查找表(LUT)结构(Xilinx), AND-OR结构(Altera)或多路选择器结构(Actel),这些结构的优点是可编程性,缺点是时延过大,造成原始设计中同步信号之间发生时序偏移。同时,如果电路较大,需要经过划分才能实现,由于引出端的延迟时间,更加大了延迟时间和时序偏移。时延问题是ASIC设计当中常见的问题。要精确地控制电路的时延是非常困难的,特别是在像FPGA/CPLD这样的可编程逻辑当中。
(3). FPGA/CPLD的容量和I/O数目都是有限的,因此,一个较大的电路,需经逻辑划分((Logic Partition)才能用多个FPGA/CPLD芯片实现,划分算法的优劣直接影响设计的性能;
(4).由于目标系统的PCB板的修改代价很高,用户一般希望能够在固定的引 分配的前提下对电路进行修改。但在芯片利用率提高,或者芯片I/O引出端很多的情况下,微小的修改往往会降低芯片的流通率;
(5).早期的FPGA芯片不能实现存储器、模拟电路等一些特殊形式的电路。最新的一些FPGA产品集成了通用的RAM结构。但这种结构要么利用率不高,要么不完全符合设计者的需要。这种矛盾来自于FPGA本身的结构局限性,短期内很难得到很好的解决。
6.尽管FPGA实现了ASIC设计的硬件仿真,但是由于FPGA和门阵列、标准单元等传统ASIC形式的延时特性不尽相同,在将FPGA设计转向其他ASIC设计时,仍然存在由于延时不匹配造成设计失败的可能性。针对这个问题,国际上出现了用FPGA阵列对ASIC进行硬件仿真的系统(如Quicktum公司的硬件仿真系统)。这种专用的硬件仿真系统利用软硬件结合的方法,用FPGA阵列实现了ASIC快速原型,接入系统进行测试。该系统可以接受指定的测试点,在FPGA阵列中可以直接观测(就像软件模拟中一样),所以大大提高了仿真的准确性和效率。
2.3硬件描述语言(HDL)
硬件描述语言(HDL)是相对于一般的计算机软件语言如C, Pascal而言的。HDL是用于设计硬件电子系统的计算机语言,它描述电子系统的逻辑功能、电路结构和连接方式。设计者可以利用HDL程序来描述所希望的电路系统,规定其结构特征和电路的行为方式;然后利用综合器和适配器将此程序变成能控制FPGA和CPLD内部结构、并实现相应逻辑功能的门级或更底层的结构网表文件和下载文件。硬件描述语言具有以下几个优点:a.设计技术齐全,方法灵活,支持广泛。b.加快了硬件电路的设计周期,降低了硬件电路的设计难度。c.用系统早期仿真,在系统设计早期就可发现并排除存在的问题。d.语言设计可与工艺技术无关。e.语言标准,规范,易与共享和复用。就FPGA/CPLD开发来说,VHDL语言是最常用和流行的硬件描述语言之一。本次设计选用的就是VHDL语言,下面将主要对VHDL语言进行介绍。
2.3.1 VHDL语言简介
VHDL是超高速集成电路硬件描述语言的英文字头缩写简称,其英文全名 是Very-High -Speed Integrated Circuit Hardware Description Language。它是在70- 80年代中由美国国防部资助的VHSIC(超高速集成电路)项目开发的产品,诞生于1982年。1987年底,VHDL被IEEE(The Institute of Electrical and产Electronics Engineers)确认为标准硬件描述语言。自IEEE公布了VHDL的标准版本((IEEE std 1076-1987标准)之后,各EDA公司相继推出了自己的VHDL设计环境。此后,VHDL在电子设计领域受到了广泛的接受,并逐步取代了原有的非标准HDL。1993年,IEEE对VHDL进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即ANSI/IEEE std1076,1993版本。1996年IEEE 1076.3成为VHDL综合标准。
VHDL主要用于描述数字系统的结构、行为、功能和接口,非常适用于可编程逻辑芯片的应用设计。与其它的HDL相比,VHDL具有更强的行为描述能力,从而决定了它成为系统设计领域最佳的硬件描述语言。强大的行为描述能力是避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统的重要保证。就目前流行的EDA工具和VHDL综合器而言,将基于抽象的行为描述风格的VHDL程序综合成为具体的FPGA和CPLD等目标器件的网表文件己不成问题。
VHDL语言在硬件设计领域的作用将与C和C++在软件设计领域的作用一样,在大规模数字系统的设计中,它将逐步取代如逻辑状态表和逻辑电路图等级别较低的繁琐的硬件描述方法,而成为主要的硬件描述工具,它将成为数字系统设计领域中所有技术人员必须掌握的一种语言。VHDL和可编程逻辑器件的结合作为一种强有力的设计方式,将为设计者的产品上市带来创纪录的速度
2.3.2 VHDL语言设计步骤
利用VHDL语言进行设计可分为以下几个步骤:
1.设计要求的定义。在从事设计进行编写VHDL代码之前,必须先对你的设计目的和要求有一个明确的认识。例如,你要设计的功能是什么?对所需的信号建立时间、时钟/输出时间、最大系统工作频率、关键的路径等这些要求,要有一个明确的定义,这将有助于你的设计,然后再选择适当的设计方式和相应的器件结构,进行设计的综合。
2.用VHDL语言进行设计描述。
(1)应决定设计方式,设计方式一般说来有三种:自顶向下设计,自底向上设计,平坦式设计。
前两种方式包括设计阶层的生成,而后一种方式将描述的电路当作单模块电路来进行的。自顶向下的处理方式要求将你的设分成不同的功能元件,每个元件具有专门定义的输入和输出,并执行专门的逻辑功能。首先生成一个由各功能元件相互连接形成的顶层模块来做成一个网表,然后再设计其中的各个元件。而自底向上的处理方法正好相反。平坦式设计则是指所有功能元件均在同一层和同一图中详细进行的。
(2)编写设计代码。编写VHDL语言的代码与编写其它计算机程序语言的代码有很大的不同,你必须清醒地认识到你正在设计硬件,编写的VHDL代码必须能够综合到用可编程逻辑器件来实现的数字逻辑之中。懂得EDA工具中仿真软件和综合软件的大致工作过程,将有助于编写出优秀的代码。
3.用VHDL仿真器对VHDL原代码进行功能仿真。对于大型设计,用VHDL仿真软件对其进行仿真可以节省时间,可以在设计的早期阶段检测到设计中的错误,从而进行修正,以便尽可能地减少对设计日程的影响。因为对于大型设计,其综合优化、配置往往要花费好几个小时,在综合之前对原代码仿真,就可以大大减少设计重复和修正错误的次数和时间。但对于小型设计,则往往不需要先对VHDL原代码进行仿真,即使做了,意义也不大。因为对于小型设计,其综合优化、配置花费的时间不多,而且在综合优化之后,你往往会发现为了实现性能目标,将需要修改你的设计。在这种情况下,用户事先在原代码仿真时所花费的时间是毫无意义的,因为一旦改变设计,还必须重新再做仿真。
4.利用VHDL综合优化软件对VHDL原代码进行综合优化处理。选择目标器件、输入约束条件后,VHDL综合优化软件工具将对VHDL原代码进行处理,产生一个优化了的网络表,并可以进行粗略的时序仿真。综合优化软件工具大致的处理过程如下:首先检测语法和语意错误;然后进行综合处理,对CPLD器件而言,将得到一组工艺专用逻辑方程,对FPGA器件而言,将得到一个工艺专用网表;最后进行优化处理,对CPLD的优化通常包括将逻辑化简为乘积项的最小和式,降低任何给定的表达式所需的逻辑块输入数,这些方程进一步通过器件专用优化来实现配置。对FPGA的优化通常也需要用乘积项的和式来表达逻辑,方程系统可基于器件专用和驱动优化目标指引来实现因式分解,分解的因子可用来对实现的有效性进行评估,其准则可用来决定是对方程序系统进行不同的因式分解还是保持现有的因子。准则通常是指分享共同因子的能力,即可以被暂存,以便于和任何新生成的因子相比较。
5.配置。将综合优化处理后得到的优化了的网络表,安放到前面选定的CPLD或FPGA目标器件之中,这一过程称为配置。在优化
逆变器中双DSP+CPLD、双DSP+双MCU 结构 都是什么意思 DSP、MCU、CPLD 都是什么东东?越详尽越好
主要研究内容:
高压静止无功补偿成套装置是应用在电力系统中,可以根据负载变化随时调节补偿无功的自动化装置。根据补偿方法可分为调容式、调感式与静止无功发生器(SVG)方式,其中调容与调感方式属无源方式,SVG属有源方式。目前市场上出现的多为无源方式,其中调容方式正逐步成为主要的补偿方式。其主要原因在于调容方式占地面积小、成本低,且更换电力电子器件后对系统无突变过程。调感方式是用电抗器与晶闸管作为支路,通过调节晶闸管的导通角度来达到调节无功补偿的目的,而一般场合系统需要补偿容性无功电流,因此调感方式需要匹配足够容量的大电容,通过改变电感电流达到调节电容的目的。此外,调节电感的导通角势必产生电流谐波,需要有滤波装置相配合;通常调感方式多用于补偿超高压系统的对地杂散电容,以避免末端电压升高问题。调容与调感属于应用不同场合两类产品,调容方式更适用于面向于负荷侧,而调感方式主要面向与大系统的电能传输。SVG是未来新一代的无功补偿装置,它既可以补偿感性电流,也可补偿容性电流,是当前无功补偿方式的替代产品,它的市场在未来。市场是一个企业的生命,若没有市场为依托,再先进的产品同样等于零,因此开发新产品必须要有市场认可为保障。市场的概念又非常广泛,同时存在针对性问题,即针对哪部分市场。企业涉足一个新领域需要一个被认可的过程,而这个过程最好从有市场需求且已经被市场认可的产品出发。根据目前国内无功补偿市场的发展情况,高压静止无功补偿系统产品开发。次序应该如下:用真空开关投切电容器组(MSC)用晶闸管串开关投切电容器组(TSC)用晶闸管串开关投切电抗器(TCR)静止无功发生器(SVG)成套装置以上产品均用于35kV及以下高压电力系统之中。上述次序不仅根据市场状况分序,同时也从开发周期与工厂的实际情况出发,工厂不会出现投资开发过大或因为开发而暂时无法涉足市场问题。
上述几个产品不存在原理实现问题,但存在实际产品化问题。产品的目的是要用户接受,这就需要用户的信息,避免闭门造车。而用户对现有产品的评价是开发过程中主要解决的问题,这可能会造成开发控制系统功能强大、系统庞大。因此,建立一个大系统,并避免系统的瓶颈受限于将来对功能的需求是产品化要考虑的首要问题,这也是产品化的目标
市场可行性分析:
近年来,随着我国电力装机容量速度递增,供电紧张的局面大为缓解。但是伴随着供电量增加的同时,电网建设的速度明显滞后,网络损耗问题日益突出。近几年来,国家电力公司和各省市电力部门都开始重视这一问题。大家已普遍重视到降低网损是供电部门减小供电成本的重要突破口,也是今后增加供电量的重要手段。据估计,通过降损来提高供电量,成本仅为兴建电厂成本的1/4~1/5,是非常可行的。在工程实践中,以下几种降损措施得到了重视:①改造电网结构,提高电压等级和增加变电站所,合理分配有功与无功;②更换高能耗变压器,用新型节能变压器;③加大导线截面积,缩短供电半径;④用无功功率补偿装置。第一种改造措施是基于对配电网长远发展考虑的好办法,它合理地改造不尽完善的供电网,可以提供10年以上电网高效、稳定的运行环境。但是由于工程投资巨大,投资回收期长,大多数地区在目前都难以开展此项工作。同样,第二、三种措施投资亦甚是可观,只有那些资金比较充足的地区可以考虑,而第四种措施投资最少。我国供电网长期以来由无功补偿匮乏而造成的网损甚为可观,这样不但造成线损大、电压波动大,而且直接影响输电容量,有电也送不过去。通过无功补偿来降低网损和提高电压是一种投资少、回报高的方案,同其它几种措施相比更适用于在全国范围内推广。电力系统中无功补偿装置具有重要地位,是变电站的必须装置,其对于降低网损、提高供电容量、提高电压质量具有决定性作用。电力系统每年大量兴建和改建各种变电站,所以无功补偿的市场容量是巨大的,据统计,近些年全国每年无功补偿装置安装容量平均在6000万千乏左右,而且每年仍以10%的容量递增。2000年全国电力系统无功补偿装置总容量在20000万千乏左右,其中电容器投切无功补偿装置的容量占总容量的85%(用电企业占40%,电力企业占45%)。可见,目前市场上绝大多数无功补偿装置仍是电容器投切方式。无功补偿装置的市场虽然很大,但是受到用户购买力、观念和重视程度等影响,在现阶段多数用户还是会首选价格低廉、维护简单的电容器投切方式。但是随着新型无功补偿装置技术的逐渐成熟、高功率电力电子器件可靠性的提高和成本的降低,不会用很长时间,TSC、TCR甚至SVG很快会占据无功补偿市场。从目前的市场来看,真空开关投切电容器组(MSC)成套装置属于成熟技术产品,而晶闸管投切电容器组(TSC)和晶闸管投切电抗器(TCR)两种产品已经开始进入市场,正在逐步被用户纳和接受,但是静止无功发生器(SVG)成套装置属于世界各国正在着重研究与开发的新一代无功补偿产品,是所有无功补偿产品中的“贵族化商品”,目前在世界各国成功并网运行的只有很少几套。同时必须看到,作为高压无功自动补偿领域而言,静止无功发生器(SVG)成套装置是这一技术的最先进、最完善形式,也是企业能够主导无功补偿市场的核心产品。从技术角度上讲,低电压的SVC装置目前已经在国内实用化;从高电压领域上讲,开发该装置主要是解决好高压开关串(晶闸管串)均压、过电压保护、运行监控以及其控制模块防电晕与局部放电等几个问题。上述问题在高电压领域均属常规问题,解决的手段较多。可见,目前开发高电压静止无功补偿(SVC)装置是可行的,也是必要的。该产品可应用于35kV及以下电网的静止无功补偿,通过对电网中样的电压、电流进行实时数字信号处理,得出所需补偿的无功量大小,确定投切支路。产品与技术的主要特点:①用美国德州仪器(TI)公司TMS320C3x系列DSP芯片,运算速度快;②可以实现开关零电流投切,无开关涌流;③无功补偿响应速度快,TSC与TCR装置小于20ms;④优良的电磁兼容性能,抗强电磁干扰;⑤提供方便灵活远程通讯接口。
2、晶闸管投切电容器(TSC)成套装置
主要研究内容:
晶闸管投切电容器(TSC)型无功补偿装置利用大功率晶闸管通流容量大、开关频率高的特点,可以广泛用于频繁连续动作,实时跟踪调整无功功率的场合。TSC补偿装置开关无触点,因而寿命远高于真空开关投切方案,由于作为高压无功补偿,晶闸管需多级串联,所以高压晶闸管的串联与保护均压技术、电容器的过零投切技术等使得该方案技术含量及复杂性要远高于电容器真空开关投切(MSC)型无功补偿装置。晶闸管投切电容器(TSC)型无功补偿装置是灵活输电(FACTS)的一个重要发展方向。TSC设备具有可以根据系统情况调整功率因数,补偿快速变化的感性功率,其响应时间可以小于20ms,电容在投切时不产生涌流与过电压问题,补偿调整可以在1/4个周波内完成,可以实现每相独立补偿,故不存在三相系统不平衡问题。电容器的容量以二进制形式设置,因而调整的范围大,可提供遥控功能以实现系统的自动化,此外,装置具有自身器件诊断功能,设备用光纤隔离信号传输,故使用安全。高压TSC装置的工作原理如下图所示。图中样系统通过电压、电流互感器将系统的电压、电流信号数字化后送至控制系统;控制系统根据样信号计算出所需补偿的无功,并依据二进制编码规则确定投切电容器的支路,然后发出相应的触发有效信号,此外,控制系统还可以监测整个TSC装置的运行状况;触发信号产生在系统相电压负峰值时刻,在控制系统发出有效信号时,触发信号才送至光纤传输系统;在TSC装置中用光纤传输触发信号可以有效地将装置的高压部分与低压控制部分分隔开,避免高压侧对低压控制部分的干扰,有效地保护低压回路;开关侧触发回路可以将光纤传输过来的触发脉冲信号经光电转换后转换为电信号,经过变换,发出晶闸管开关所需的触发脉冲,使补偿电容器投入运行。开关串为一系列晶闸管/整流管相串联,整流管在系统电压du/dt<0时给电容器充电,这样晶闸管可以实现零电压触发,使得整个投切过程无过电压与涌流产生。
主要技术指标:
额定电压:35kV,10kV,6kV;
额定容量:300kvar~30000kvar;
额定频率:50Hz/60Hz;
控制方式:过零触发;
工作方式:具有手动补偿和自动补偿两种工作方式。
响应速度:≤0.02s
电容器组:100~900kvar/每支路
保护:过流,过电压,开关故障保护,越限报警和保护闭锁功能。
测量系统:数字信号测量系统(DSP),一个周波(20ms)内能对电网的各项参数进行测量。
通信接口:RS-232/RS-485通讯接口,电网数据可储存三个月以上。
显示:中文界面,汉字提示,实时显示电网的主要参数,有背光显示功能。
应用领域:
用于高压和低压配电系统电容器补偿装置的自动调节,提高电网功率因数。
3、静止无功发生器(SVG)成套装置
主要研究内容:
静止无功发生器(StaticVarGenerator)装置作为无功补偿系统的最先进形式,在欧洲被称为ASVC(AdvanceStaticVarCompensator)。SVG实际上是一个由电力电子高功率器件组成的阀阵列,作为逆变器,将直流侧电压转换为交流侧电压,与系统并列运行,其结构原理如下图所示。在实际SVG装置时会遇到以下问题:1)如何减小输出无功电流中的谐波成分;2)如何扩大SVG装置的容量以符合系统的要求;3)如何增加输出电压,以便SVG装置接入更高电压等级的系统。如果解决上述问题,可以考虑以下措施:1)用串联或并联GTO(或IGBT),以提高容量和电压;2)用多组逆变器串联的多重化结构,提高容量和电压,减少输出电压和电流中的谐波;3)用适当的PWM技术,以减少谐波成分。在实际大容量的SVG制造上,这几项措施可同时用;较小容量的SVG可能用简单一些的结构。除了小容量的模型化SVG装置以外,多重化技术是必须用的。在多重化技术中,利用几个单相或三相逆变器产生相位相差若干角度的方波电压,然后用变压器将此不同相位的方波电压串联在一起,所形成的结果电压呈阶梯状,更接近于正弦,所以输出电压含更少的谐波成分。实用的多重化方案如下图所示,其中变压器的一次侧是串联的,其电压是各二次侧电压之和,但是各变压器二次侧电压的相位、变压比不尽相同,各方波电压的宽度也可能不同,因此一次侧串联后形成的阶梯波可能是不等阶的。
SVG装置用多重化的目的是使输出电压和电流接近正弦波,在SVG的结构化设计时,应以总谐波畸变率最小作为控制目标函数,求适当的脉宽、相位和幅值组合。此外,GTO和其他开关器件串联使用时,要求同一桥臂上各器件动作一致。这就要求各元件开关特性充分一致,但是考虑到GTO的频率不能过高,各GTO元件在开通和关断时参数不可能完全相同,则可以用较低的脉宽调制频率实现多重化设计,以减少总谐波畸变率,同时提高SVG容量。
该补偿装置可以实现:在稳定状态下,维持系统电压不变,或按要求调压;在稳定状态下,维持系统某处的无功功率最小,或按经济性等要求调节无功量;在动态或暂态时,按系统稳定性要求调节无功量以提高稳定极限或抑制振荡。
产品关键技术:
高压静止无功补偿成套系统装置可以根据系统情况调整功率因数,补偿快速变化的感性功率;电容在投切时不产生涌流与过电压问题;可以实现每相独立补偿,故不存在三相系统不平衡问题;电容器的容量以二进制形式设置,因而调整的范围大。此外,装置具有自身器件诊断功能,设备用光纤隔离信号传输,故使用安全。产品的关键技术有:①控制系统能够对系统电压、电流检测,经计算确定投切支路;能够准确发出触发控制信号;可以提供一个远程控制标准通讯接口;可以实现装置开关串的故障自诊断功能;控制系统必须运行可靠。②晶闸管开关串过电压与过电流保护取措施进行静态均压保护;消除雷电过电压与开关串的局部放电;晶闸管开关串的动态均压技术,抑制晶闸管开关时过高的电压与电流上升率;合理设计晶闸管/整流管模块与开关侧触发电路实际安装结构;开关串高压部分的防电晕设计,需要对高压部分作具体的数值分析,计算出合理的可加工结构参数;高压部分绝缘材料应具有良好的沿面放电特性。③自诊断监测方法:装置由串级变压器铁芯可以样电压,并监测这一电压的变化情况,因而可以对晶闸管开关串故障及时报警,以避免故障的进一步扩大;装置可以监测开关串支路退出运行时的泄露电流。此外,为了降低制造成本也可以用经降压变压器在低压侧补偿方式或利用变压器作为开关的方式(即在低压侧利用晶闸管使变压器开路与短路),但这些方法都会使得系统的稳定性降低且过渡过程精确分析困难。可见,高压静止无功补偿成套系统装置是将高电压、电力电子与计算机控制技术相结合的产物,因而属高技术产品,是今后我国无功补偿设备发展的一个重要方向。由于使用晶闸管的静止无功补偿装置具有优良的性能,可以预测,在一定时期内其市场必将一直迅速而稳定地增长,占据静止无功补偿装置的主导地位。尤其是应用在电压等级较高的电力系统中,对提高系统的稳定性、运行安全性、提高输电效率等方面更有着重要的现实意义。因此,开发高压无功补偿装置产品不仅可以带来相当可观的经济效益,而且对我国电力工业的进一步发展有着积极的促进作用。
4、电力有源滤波器(APF)成套装置
主要研究内容:?
随着近年来电力电子设备的广泛应用(如家用电器、调速电机、电气化铁道、开关型电力负载等),就会在电力系统中产生大量的谐波分量,这些谐波分量会造成系统电流波形发生严重的畸变,从而使得供电质量下降、用电设备运行的可靠性降低。因此,改善电力系统的供电质量是今后电力供电部门发展的一个重要方向。电力滤波可分为有源方式与无源方式。无源方式通常用调谐方式,但无源方式常常需要考虑过载问题,此外无源滤波方式的设计需要考虑负载的特性。有源滤波的原理是用电力电子器件产生一个与系统中的谐波成分相位相反的同样的谐波分量注入系统,从而抵消系统中的谐波成分,达到补偿非线性负载的目的。电力有源滤波(ActivePowerFilter-APF)装置能够对变化的谐波及无功进行快速的动态跟踪补偿,且补偿特性不受电网阻抗的影响,因而是替代传统无源滤波装置的现代新型电力设备。与无源滤波补偿装置相比,其具有以下突出优点:(1)不仅能抑制各次谐波,还可以抑制闪变,补偿无功,有一机多能的特点,在性价比上较合理;(2)滤波特性不受系统阻抗的影响,可消除与系统阻抗发生谐振的危险;(3)实现调节与控制自动化,替代传统的机械调控与操作手段。可见,有源滤波装置具有巨大的技术与性能优势,随着电力电子工业的发展,器件的性价比将不断提高,有源滤波补偿装置必然会得到越来越广泛的使用。近几年随着我国城网改造的逐步深入,电力系统的改造产品逐步从降低线损、安全供电、在线监测以及线路、输变电站、发电自动化方面等预计将转向改善供电质量方面。改善电力系统的供电质量不仅可以提高系统的安全运行、降低损耗,也可以改善用电设备的工作条件、增加用电设备的使用寿命等。因而改善电力系统的供电质量将成为今后我国电力工业发展的一个重要内容。与传统的无功补偿及L-C串联支路滤波方式相比较,电力有源滤波成套装置具有自动化程度高、投入或退出运行时对系统的影响小、补偿与滤波效果好、反应时间短、占地少、使用安装方便等优点,是今后电力滤波的发展方向。由于电力有源滤波成套装置具有提供纯净电源、消除谐波发生源以及滤除系统中谐波成份等作用,因此它的应用领域十分广阔,如各大工厂、公司、输变电所、研究所、学校、机关部门、居民小区、电气化铁路变电站、地铁等。此外,电力有源滤波成套装置属高新技术产品。因此,具有自动化程度高的电力有源滤波装置将是今后滤波设备发展的方向,开发电力有源滤波成套装置将有可观的经济效益与社会效益。
市场前景分析:
二十一世纪中国电网面临着全面的改造和升级,国家每年将对其投入近千亿资金。而柔流输电控制系统(FACTS)作为其中最关键的技术,其投资比例将至少不低于10%,该产品已被列为“九五”国家级重点产品之一、国家经贸委三大节能重点产品之一、国家电力公司确认的二十一世纪电力革命性前沿技术。作为柔流输电系统重要组成部分的电力有源滤波成套装置,其核心技术的先进性,在性价比上具有国外同类产品无可比拟的优势,该产品市场空间巨大,行业门槛极高,可以预见,投资者既可从该产品本身获得稳定的超额利润,同时由于该产品的市场概念极佳,也可通过资本运作,从资本市场上获得高额资本利得收入。我国现有许多企业的电网需增设滤波补偿装置,广阔的地域,较长的电气化铁道变电站也有不少需增设滤波装置,但由于经济能力及落后的意识等原因,尚未实施,不少企业宁可月月罚款,也不取措施,仅很少数量有电网治理设备,大多还需进行治理,目前情况是积债甚多。随着改革的深入,企业追求经济效益愿望的提高,法制和环保意识的加强,电力有源滤波装置在今后十年左右的时间内会有较广阔的市场。在企业电网和公共电网上配置有源滤波装置能净化电网,提高供电质量,对保证企业和社会的正常用电十分重要,我国早已公布了有关标准,并对严重的电网污染用户处以罚款。电力有源滤波补偿装置的推广使用,将使我国广大电网品质得以改善,实现“绿色供电”造福整个社会,具有广泛的社会效益。
近几年随着电力系统实施“厂网分开”,电厂“竞价上网”这就要求厂家(电厂)、供应商(电网,即供电公司)用电力有源滤波及无功补偿装置,实现节能降耗,提高供电质量。我国城网改造的逐步深入,电力系统的改造产品逐步从降低线损、安全供电、在线监测以及线路、输变电站、发电自动化方面等预计将转向改善供电质量方面。改善电力系统的供电质量不仅可以提高系统的安全运行、降低损耗,也可以改善用电设备的工作条件、增加用电设备的使用寿命等。因而改善电力系统的供电质量将成为今后我国电力工业发展的一个重要内容。作为电力系统,随着补偿容量的需求增高,用以电力电子高功率器件为基础的电力有源滤波与无功补偿装置要比传统的用电容的无功补偿装置的材料成本要低。与传统的L-C串联支路滤波方式相比较,电力自动化有源滤波装置具有自动化程度高、投入或退出运行时对系统的影响小、补偿与滤波效果好、响应时间短、占地少、使用安装方便等优点,是今后电力补偿与滤波的发展方向。由于电力有源滤波装置具有提供纯净电源、消除谐波发生源以及滤除系统中谐波成份等作用,因此它的应用领域十分广阔,如各大工厂、公司、输变电所、研究所、学校、机关部门、居民小区、电气化铁路变电站、地铁等。此外,电力有源自动化波装置属高新技术产品,因此开发生产电力有源自动化无功补偿及滤波装置将有可观的经济效益。该装置可应用于35kV及以下电网中,滤除电网中有害的谐波,避免谐波对高压电力产品的破坏,延长高压电器的使用寿命,净化电网,抑制电网谐波“污染”;同时可以补偿电网中的无功,以节约能源。随着电力电子工业的发展,器件的性价比不断提高,该产品必然会在电气化铁路、冶金、矿山、油田等高用电负荷、高谐波污染的工业领域得到广泛的使用。此外,该产品从技术上也完全可以应用于380/220V低压电网,提高城乡电网的供电质量。
原理结构:
高压有源滤波成套装置由滤波APF控制器、多个模块化滤波单元以及冷却系统、保护装置等一些附属设备组成,原理结构如下图所示。APF控制器负责根据集到的谐波电流、系统电压计算需补偿谐波电流,随后传至各个滤波单元,各滤波单元根据各自分配的滤波容量,调制出补偿电流,经由变压器高压边逐级串连接入高压,将产生的补偿电流注入电网,实现有源滤波。图中所示的控制电路硬件结构原理以DSP(数字信号处理器)芯片为核心,所用的DSP芯片为美国德州仪器公司的TMS320VC33,其指令周期为10ns,该处理器具有便于数字信号处理的特殊指令系统,保证了控制电路工作的实时性。该成套装置在布置方案上,可以分为主控制柜(包括控制器、手动操纵部分、电源)、隔离开关柜(包括避雷器等保护装置系统)、滤波单元柜(每个滤波单元柜包括IGBT模块、直流电容器、平波电感、中频变压器)。装置参照标准为GB/T14549-93《电能质量公用电网谐波》;结构设计执行GB3906-91《3-35kV交流金属封闭开关设备》标准。
产品关键技术:?
该装置核心部分为滤波装置中央控制器与各滤波单元控制器硬件平台,该硬件平台应具有便于控制模块化、主回路单元化的特点。由高速DSP芯片来完成滤波算法,而由通用P89C51芯片完成键盘、显示与上位机通讯功能。滤波补偿电流检测算法的软件实现是整个控制器的核心之一,其原理框图如图所示,软件程序编制用TI公司为其DSP系列产品提供的开发软件平台CodeComposerTM实现。具体编程可以用C与汇编混合编程的方法实现。正是由于用了专门的浮点DSP芯片,才能实现滤波补偿电流的实时计算,计算所得的补偿电流经串行编码后,由光纤通讯下传至各滤波单元控制器中,用于进行电流跟踪比较,输出各滤波单元的补偿电流。主电路直流电容充电电压的控制也是保证滤波装置正常工作的关键技术,作为滤波成套装置在补偿谐波电流的同时,要求在直流电容充电的过程中不能产生新的谐波,因此需要对充电电流加以控制。这样在控制各滤波单元回路时,同时集直流电容端电压U+、U-,将充电电流正弦化的控制加入IGBT开关的控制中。该产品主要具有完善的滤波主控制器与滤波单元控制器设计,滤波主控制器与滤波单元控制器经由光纤连接,完全无电气上的联系,故抗电磁干扰能力强;此外,该装置既可以补偿谐波电流,也可以兼有无功补偿的功能;同时可以提供电压、电流、有功、无功等电参数,以及投切记录、故障记录等信息。产品其余技术主要参照相关国家标准完成。
主要技术指标:?
额定电压:≤35kV?
额定容量:≤30MVA?
滤波效果:符合GB/T14549-93?
滤波次数:19次?
触发方式:光电触发?
PWM电源:0~500V可调?
工作方式:手动、自动两种方式。?
冷却:水冷/风冷?
响应速度:0.02s?
环境温度:-40℃~+55℃?
海拔高度:<1000m?
保护:过流,速断,过电压,谐波超限?
应用环境:户内(特殊要求可户外)?
应用领域:
电力有源滤波及无功补偿装置具有3个主要功能:吸收电网谐波,改善功率因数,抑制电压波动。主要用于电力系统变电站的滤波及无功补偿,可以根据负荷进行自动投切。此外还可以广泛应用于电弧炉,轧钢机,提升机等冲击性负荷及机场、地铁、钻井平台、体育场、港口、程控交换机站、写字楼、住宅小区等对电能要求高的场所。
5、新型消弧线圈自动调谐控制器及装置
主要研究内容:
产品主要用于城乡6kV~35kV中压配电网中,补偿单相接地故障时电网的电容电流,使接地点的残流减小,故障相接地电弧的恢复电压上升速度降低,使电弧自行熄灭,从而提高配电网的供电可靠性。产品特点:①用中性点外加信号法(变频法)实时测量线路对地电容,测量精度高、速度快;②晶闸管调容式补偿方式,调谐过程无火花,属无触点投切;③具有自动选线功能。此外,可以提供有源型单相接地故障自动跟踪补偿装置,该装置可以替代消弧线圈自动调谐装置,其原理是利用检测的容性电流信号,用高功率电力电子模块,准确制造一个感性电流分量注入系统,实现完全连续跟踪补偿,属于国内领先的技术方案。目前我国6~35kV配电网,绝大部分用中性点不接地的方式运行,随着配电网的扩大,电缆线路增多,配电网对地的电容电流不断增加,致使单相接地时由于接地电弧不能自灭而发展的相间短路的几率增高;同时,电容电流比较大时易发生谐振过电压现象,使配电网的安全运行得不到保证。为了从根本上取有效措施,确保配电网的安全供电,用自动调谐的消弧线圈接地补偿系统,能有效抑制弧光过电压的幅值和谐振过电压的产生,大大减少单相接地引起相间故障而跳闸的停电事故。在我国,当单相接地电容电流大于规程规定值时,大多用消弧线圈接地补偿方式,利用消弧线圈的电感电流补偿配电网的电容电流,使接地点的残流减小,故障相接地电弧的恢复电压上升速度降低,以致电弧能够自行熄灭,从而提高配电网的供电可靠性。但是目前用的消弧线圈大部分是手动调匝式的,在实际运用中,因存在调节不方便,运行人员判断调节有困难,脱谐度无法控制等问题,会影响电网的安全运行。因此,为了保证消弧线圈运行在最佳状态,本产品设计出消弧线圈自动调整系统。它能跟踪运行方式的变化及系统电容电流的变化,自动调节消弧线圈电感值,使消弧线圈始终补偿在既能熄灭电弧又不产生谐振过电压的最佳状态,实现6kV~35kV系统的自动跟踪补偿。系统组成:本产品的新型消弧线圈自动调谐控制器及装置可实现6~35kV系统的对地电容电流自动跟踪补偿。消弧线圈自动调谐接地补偿装置主要由四部分组成:①接地变压器SJD,一次线圈用Z型连接,高压中性点引出接消弧线圈;②消弧线圈XD,副线
cpld是什么意思?
MCU是微控制器,相当于一台小电脑,擅长控制不擅长数字运算。
DSP是数字处理芯片,和MCU差不多,里面有硬件乘法器,擅长数字运算,也能控制,速度比MCU高。
CPLD是可编程数字逻辑,相当于很多74和54芯片的组成的逻辑电路的集合,擅长组合逻辑。不用CPLD而用普通逻辑芯片也可以实现,但占面积。
CPLD(Complex Programmable Logic Device)是Complex PLD的简称,一种较PLD为复杂的逻辑元件。CPLD是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。
其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。
器件特点
它具有编程灵活、集成度高、设计开发周期短、适用范围宽、开发工具先进、设计制造成本低、对设计者的硬件经验要求低、标准产品无需测试、保密性强、价格大众化等特点,可实现较大规模的电路设计,因此被广泛应用于产品的原型设计和产品生产(一般在10000件以下)之中。
几乎所有应用中小规模通用数字集成电路的场合均可应用CPLD器件。CPLD器件已成为电子产品不可缺少的组成部分,它的设计和应用成为电子工程师必备的一种技能。
CPLD是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。